30 resultados para LED-BASED PHOTOMETER

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The light calibration system is one of the key components of Neutron Wall detector. It is used to calibrate the electronics and to monitor the long-term stability of the detector modules. With the detaile investigations, a calibration system with high-power LED (3W) driven by the fast pulses has been carried out. It is also tested together with the detector module of the Neutron Wall and the result of the preliminary calibration demonstrates that it fulfills the needs. It's a new design proposal to the light calibration system of the fast scintillator detector.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We report the growth of hexagonal ZnO nanorods and nanoflowers on GaN-based LED epiwafer using a solution deposition method. We also discuss the mechanisms of epitaxial nucleation and of the growth of ZnO nanorods and nanoflowers. A GaN-based LED epiwafer was first deposited on a sapphire substrate by MOCVD with no electrode being fabricated on it. Vertically aligned ZnO nanorods with an average height of similar to 2.4 mu m were then grown on the LED epiwafer, and nanoflowers were synthesized on the nanorods. The growth orientation of the nanorods was perpendicular to the surface, and the synthesized nanoflowers were composed of nanorods. The micro-Raman spectra of the ZnO nanorods and nanoflowers are similar and both exhibit the E-2 (high) mode and the second-order multiple-phonon mode. The photoluminescence spectrum of ZnO nanostructures exhibits ultraviolet emission centred at about 380 nm and a broad and enhanced green emission centred at about 526 nm. The green emission of the ZnO nanostructures combined with the emission of InGaN quantum wells provides a valuable method to improve the colour rendering index (CRI) of LEDs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the structural and optical properties of nonpolar m-plane GaN and GaN-based LEDs grown by MOCVD on a gamma-LiAlO2 (100) substrate. The TMGa, TMIn and NH3 are used as sources of Ga, In and N, respectively. The structural and surface properties of the epilayers are characterized by x-ray diffraction, polarized Raman scattering and atomic force microscopy (AFM). The films have a very smooth surface with rms roughness as low as 2nm for an area of 10 x 10 mu m(2) by AFM scan area. The XRD spectra show that the materials grown on gamma-LiAlO2 (100) have < 1 - 100 > m-plane orientation. The EL spectra of the m-plane InGaN/GaN multiple quantum wells LEDs are shown. This demonstrates that our nonpolar LED structure grown on the gamma-LiAlO2 substrate is indeed free of internal electric field. The current voltage characteristics of these LEDs show the rectifying behaviour with a turn on voltage of 1-3 V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on morphological characters, peritrich ciliates (Class Olygohymenophorea, Subclass Peritrichia) have been subdivided into the Orders Sessilida and Mobilida. Molecular phylogenetic studies on peritrichs have been restricted to members of the Order Sessilida. In order to shed more light into the evolutionary relationships within peritrichs, the complete small subunit rRNA (SSU rRNA) sequences of four mobilid species, Trichodina nobilis, Trichodina heterodentata, Trichodina reticulata, and Trichodinella myakkae were used to construct phylogenetic trees using maximum parsimony, neighbor joining, and Bayesian analyses. Whatever phylogenetic method used, the peritrichs did not constitute a monophyletic group: mobilid and sessilid species did not cluster together. Similarity in morphology but difference in molecular data led us to suggest that the oral structures of peritrichs are the result of evolutionary convergence. In addition, Trichodina reticulata, a Trichodina species with granules in the center of the adhesive disc, branched separately from its congeners, Trichodina nobilis and Trichodina heterodentata, trichodinids without such granules. This indicates that granules in the adhesive disc might be a phylogenetic character of high importance within the Family Trichodinidae.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A spin-injection/-detection device has been fabricated based on the multiple quantum well light emitting diode (LED) structure. It is found that only a broad electroluminescence (EL) peak of a full width at half maximum of 8.6 nm appears at the wavelength of 801 nm in EL spectra with a circular luminescence polarization degree of 18%, despite PL spectra always show three well resolved peaks. The kinetic energy gained by injected electrons and holes in their drift along opposite directions broadens the EL peak, and makes three EL peaks converge together. The same process also destroys the injected spin polarization of electrons mainly dominated by the Bir-Aronov-Pikus spin relaxing mechanism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

p-GaN surfaces are nano-roughened by plasma etching to improve the optical performance of GaN-based light emitting diodes (LEDs). The nano-roughened GaN present a relaxation of stress. The light extraction of the LEDs with nano-roughened surfaces is greatly improved when compared with that of the conventional LEDs without nano-roughening. PL-mapping intensities of the nano-roughened LED epi-wafers for different roughening times present two to ten orders of enhancement. The light output powers are also higher for the nano-roughened LED devices. This improvement is attributed to that nano-roughened surfaces can provide photons multiple chances to escape from the LED surfaces.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

InGaN/GaN-multiple-quantum-well-based light emitting diode ( LED) nanopillar arrays with a diameter of approximately 200nm and a height of 700nm are fabricated by inductively coupled plasma etching using Ni self-assembled nanodots as etching mask. In comparison to the as-grown LED sample an enhancement by a factor of four of photoluminescence ( PL) intensity is achieved after the fabrication of nanopillars, and a blue shift and a decrease of full width at half maximum of the PL peak are observed. The method of additional wet etching with different chemical solutions is used to remove the etch-induced damage. The result shows that the dilute HCl ( HCl:H2O=1:1) treatment is the most effective. The PL intensity of nanopillar LEDs after such a treatment is about 3.5 times stronger than that before treatment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sapphire substrates patterned by a selective chemical wet and an inductively coupled plasma (ICP) etching technique was proposed to improve the performance of GaN-based light-emitting diodes (LEDs). GaN-based LEDs were fabricated on sapphire substrates through metal organic chemical vapor deposition (MOCVD). The LEDs fabricated on the patterned substrates exhibit improved device performance compared with the conventional LED fabricated on planar substrates when growth and device fabricating conditions were the same. The light output powers of the LEDs fabricated on wet-patterned and ICP-patterned substrates were about 37% and 17% higher than that of LEDs on planar substrates at an injection current of 20 mA, respectively. The enhancement is attributable to the combination of the improvement of GaN-based epilayers quality and the improvement of the light extraction efficiency. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In GaAs-based light-emitting diode (LED) or laser diode (LD), the forward voltage (V) will decrease linearly with the increasing junction temperature (T). This can be used as a convenient method to measure the junction temperature. In GaN-based LED, the relationship is linear too. But in GaN-based LD, the acceptor M (g) in p-GaN material can not ionize completely at-room temperature, and the carrier density will change with temperature. But we find finally that, this change won't lead to a nonlinear relationship of V-T. Our experiments show that it is Linear too.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wafers with normal light-emitting diode structure were grown by metal organic chemical vapor deposition system. The pressure and temperature were varied during growth of buffer layer in order to grow different types of epilayers. The cathodoluminescence results show that the interface distortion of quantum well plays an important role in radiant efficiency. The electroluminescence detections indicate that the dislocations also influence the external quantum efficiency by lowering the electron injection efficiency. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nano-patterning sapphire substrates technique has been developed for nitrides light-emitting diodes (LEDs) growths. It is expected that the strain induced by the lattice misfits between the GaN epilayers and the sapphire substrates can be effectively accommodated via the nano-trenches. The GaN epilayers grown on the nano-patterned sapphire substrates by a low-pressure metal organic chemical vapor deposition (MOCVD) are characterized by means of scanning electron microscopy (SEM), high-resolution x-ray diffraction (HRXRD) and photoluminescence (PL) techniques. In comparison with the planar sapphire substrate, about 46% increment in device performance is measured for the InGaN/GaN blue LEDs grown on the nano-patterned sapphire substrates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An effective approach to enhance the light output power of InGaN/GaN light emitting diodes (LED) was proposed using pyramidal patterned sapphire substrates (PSS). The sapphire substrates were patterned by a selective chemical wet etching technique. GaN-based LEDs were fabricated on patterned sapphire substrates through metal organic chemical deposition (MOCVD). The LEDs fabricated on patterned sapphire substrates exhibit excellent device performance compared to the conventional LEDs fabricated on planar sapphire substrates in the case of the same growth and device fabricating conditions. The light output power of the LEDs fabricated on patterned sapphire substrates was about 37% higher than that of LEDs on planar sapphire substrates at an injection current of 20 mA. The significant enhancement is attributable to the improvement of the quality of GaN-based epilayers and improvement of the light extraction efficiency by patterned sapphire substrates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The structure of micro-LEDs was optimized designed. Optical, electrical and thermal characteristics of micro-LEDs were improved. The optimized design make micro-LEDs suitable for high-power device. The light extraction efficiency of micro-LEDs was analyzed by the means of ray tracing. The results shows that increasing the inclination angle of sidewall and height of mesa, and reducing the absorption of p and n electrode can enhance the light extraction efficiency of micro-LEDs. Furthermore, the total light output power can be boosted by increasing the density of micro-structures on the device. The high-power flip-chip micro-LEDs were fabricated, which has higher quantum efficiency than conventional BALED's. When the number of microstructure in micro-LEDs was increased by 57%, the light output power was enhanced 24%. Light output power is 82.88mW at the current of 350mA and saturation current is up to 800mA, all of these are better than BALED which was fabricated in the same epitaxial wafer. The IN characteristics of micro-LEDs are almost identical to BALED.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Back Light Unit (BLU) and Color Filter are the two key components for the perfect color display of Liquid Crystal Display (LCD) device. LCD can not light actively itself, so a form of illumination, Back Light Unit is needed for its display. The color filter which consists of RGB primary colors, is used to generate three basic colors for LCD display. Traditional CCFL back light source has several disadvantages, while LED back light technology makes LCD obtain quite higher display quality than the CCFL back light. LCD device based on LED back light owns promoted efficiency of display. Moreover it can generate color gamut above 100% of the NTSC specification. Especially, we put forward an idea of Color Filter-Less technology that we design a film which is patterned of red and green emitting phosphors, then make it be excited by a blue light LED panel we fabricate, for its special emitting mechanism, this film can emit RGB basic color, therefore replace the color filter of LCD device. This frame typically benefits for lighting uniformity and provide pretty high light utilization ratio. Also simplifies back light structure thus cut down the expenses.